Skip to main content

AMO Arm pneumatic prosthetic does mind-control on the cheap

We're no strangers to amputees moving stuff with their minds -- for that matter, a thought-controlled prosthetic isn't really new to us, either -- but the pneumatic arm you see here isn't like other intelligent limbs. Unlike most mind-operated prosthesis, the Artificial Muscle-Operated (AMO) Arm doesn't require invasive surgery, and according to its inventors, it costs a quarter of the price to make. Here's how the thing works: the host human wears a headset that sends brain signals to a chip in the arm that then matches those signals to a database of related actions, triggering a series of pneumatic pumps and valves to move the limb. Thus, if the wearer thinks 'up,' the arm moves up. The AMO Arm's creators, a pair of undergraduate biomed students, say that not only is their invention a steal to produce, but it also takes just minutes to acclimate to, which has us wondering, do you have to be missing an arm to get a hold of one of these things? You know, we can always use an extra hand. Full PR after the break.

Ryerson students invent breakthrough brain-controlled prosthetic arm
March 29, 2011

Ryerson biomedical engineering students Michal Prywata and Thiago Caires' prosthetic arm is controlled by brain signals, which is a first in medical prosthetics.

Two Ryerson University undergraduate biomedical engineering students are changing the world of medical prosthetics with a newly developed prosthetic arm that is controlled by brain signals. The Artificial Muscle-Operated (AMO) Arm not only enables amputees more range of movement as compared to other prosthetic arms but it allows amputees to avoid invasive surgeries and could potentially save hundreds of thousands of dollars. The AMO Arm is controlled by the user's brain signals and is powered by 'artificial muscles' - simple pneumatic pumps and valves - to create movements. In contrast, traditional prosthetic limbs – which typically offer more limited movements – rely on intricate and expensive electrical and mechanical components.

Developed by third-year student Thiago Caires and second-year student Michal Prywata, the AMO Arm is controlled by the brain and uses compressed air as the main source of power. The digital device makes use of signals in the brain that continue to fire even after a limb is amputated. Users wear a head-set that senses a signal – for example, the thought "up" – and sends it wirelessly to a miniature computer in the arm. The computer then compares the signal to others in a database. The resulting information is sent to the pneumatic system, which in turn, activates the arm to create the correct movement. Simulating the expansion and contraction of real muscles, the system makes use of compressed air from a small, refillable tank in the user's pocket. The artificial muscle system created by Caires and Prywata is a first in the field of prosthetics and they continue to work on perfecting their system. For example, the pair is working on a design to fit the tank into the arm itself.

Since the device does not include microelectronics and motors, it costs one-quarter of other functional prosthetic arms, which can run users more than $80,000, depending on the complexity of the prosthesis. Other prosthetic arms with a similar degree of control require patients to undergo a complex muscle re-innervation surgery – a complicated procedure that costs about $300,000 and is not available in Canada and not covered by the provincial health plan. As the AMO Arm is non-invasive, the period of adjustment for new users is drastically decreased. While traditional prosthetics may require weeks of learning and training, basic function with the AMO Arm can be mastered in mere minutes.

"In just ten minutes of practising, a person can pick up the mind-control aspect of the technology," says Prywata. Moreover, he says, the AMO Arm will not only benefit amputees, but could also be used as an assistive device on wheelchairs, enabling users to reach things with greater ease. The technology could also be used by the military to facilitate remote operations and in situations requiring robotics.
The AMO Arm can currently move up, down, left, right, as well as open and close.

The initial concept for the AMO Arm was developed shortly after Caires and Prywata met at a Ryerson Engineering open house in fall 2009. Each showcased different projects and were impressed with the other's work. It took a year to develop the software program for the AMO Arm while the actual prototype was created during a marathon 72-hour design session.

Caires and Prywata's invention went on to win first prize at the 2011 Ryerson Engineering Competition, and took home first-place awards for innovative design and social awareness at the Ontario Engineering Competition in February. The wins at the provincial level qualified Caires and Prywata for the Canadian Engineering Competition, which was held earlier this month in Montreal. There, the AMO Arm placed second in the innovative design category.

Caires and Prywata are working to move each finger on the AMO Arm individually. "Independent finger movements require many more sensors," Caires says. "For example, while not impossible, it's still quite difficult to grab a key and unlock a door."

In the future, the pair would also like the AMO Arm to sense different materials (e.g., an egg versus a full bottle of water) and adjust the force used proportionately. They have already developed an innovative concept for capacitive sensing which detects different materials prior to contact. The students also have plans to develop an adaptive system, one that will progressively "learn" from a user's movements and carry them out seamlessly.

Although they are still students, Prywata and Caires are moving ahead on the commercialization of their innovations. They have formed their own company, Bionik Laboratories Inc. (www.bioniklabs.com), and are currently seeking three patents for the AMO Arm and their other technologies. Their recent acceptance into Ryerson's home of innovation and commercialization: the Digital Media Zone (DMZ) will help them in achieving these goals.

Gaining residency in the DMZ (www.ryerson.ca/dmz) was a key move for their business which, while still quite recent, has already yielded positive results. "We were really impressed with the DMZ space initially, but didn't know about all the resources at our disposal and the exposure it would afford us until we got here. The first day we arrived, we were meeting people, including CEOs and within a week we were shooting a piece for the Discovery Channel." says Prywata.

Through their time at the DMZ, Bionik is hoping to build their business and create partnerships and connections with organizations such as the Ministry of Research and Innovation (MRI) and MaRS, which fund medical research and development. "Our backgrounds are not business, so we have been learning quickly from the people around us at the DMZ."
gizmag
sourceRyerson University

Comments

Popular posts from this blog

Manual for Alienware M11x with Sandy Bridge confirms NVIDIA GT540M graphics

If the previous Alienware M11x R3 spec leak got you all giddy, then we have some good news for you: according to a manual dug up by one of our eagle-eyed readers, it appears that this year's M11x refresh will indeed be coming with second-gen Core i5 ULV and Core i7 ULV options, along with a faster DDR3 bus (1333MHz instead of 800MHz), a higher-res webcam (2MP instead of 1.3MP), an HD TrueLife LCD, and optional 3G / 4G mobile broadband. But of course, the real meat on this laptop is its graphics card, which turns out to be an NVIDIA GeForce GT540M with either 1Gb or 2GB of dedicated memory -- not bad for a laptop of this size. Unsurprisingly, no dates or prices are mentioned here, but given the early start of inventory clearance, it shouldn't be long before Round Rock reveals all.  Dell (ZIP)

IBM shows off Smarter Traveler traffic prediction tool

Traffic alerts on GPS devices may be old hat at this point, but there's obviously still plenty of room for improvement, and IBM now says it's managed to do just that with its new "Smarter Traveler" traffic prediction tool. Developed with the help of UC Berkeley's transportation group and the California Department of Transportation, the tool relies on predictive analytics software, GPS monitoring and sensors already on the roads to not only offer alerts, but build a model of each person's usual commuter route. Once the system is trained a bit, commuters are able to check out what's effectively a forecast of their entire route before they even leave the house, rather than simply be alerted to traffic problems before it's too late to avoid them. Head on past for the complete press release, and a quick video explanation of how it works. IBM, Caltrans and UC Berkeley Aim to Help Commuters Avoid Congested Roadways Before their Trip Begins First-of-a-K...

Sony Ericsson Xperia Neo delayed to Q3, Arc and Play facing limited supply due to Japanese quake

There hasn't been much good news coming out of Japan lately and this sadly keeps up with the unhappy trend. Sony Ericsson has officially bumped the broad launch (it's already available in limited quantities) of its Xperia Neo handset to at least July, explaining the delay as the result of "supply chain disruptions." Additionally, the Xperia Arc and Play devices, two other members of the company's new Android Gingerbread family, will be available in smaller volume than expected, at least for the near term. We guess that might go some way to explaining why the Xperia Play failed to reach some UK carriers in time for its April 1st launch date. Skip past the break for a statement from Sony Ericsson, who promises to be more explicit about the situation when it delivers its latest quarterly results on April 19th. As Sony Ericsson continues to assess the impact of the situation in Japan on its business, we have communicated to our operator customers and dis...